Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Unconventional ferromagnetism and transport properties of (In,Mn)Sb dilute magnetic semiconductor

Identifieur interne : 000090 ( Russie/Analysis ); précédent : 000089; suivant : 000091

Unconventional ferromagnetism and transport properties of (In,Mn)Sb dilute magnetic semiconductor

Auteurs : RBID : Pascal:10-0160432

Descripteurs français

English descriptors

Abstract

Narrow-gap higher mobility semiconducting alloys In1-xMnxSb were synthesized in polycrystalline form and their magnetic and transport properties have been investigated. Ferromagnetic response in In0.98Mn0.02Sb was detected by the observation of clear hysteresis loops up to room temperature in direct magnetization measurements. An unconventional (reentrant) magnetization versus temperature behavior has been found. We explained the observed peculiarities within the frameworks of recent models which suggest that a strong temperature dependence of the carrier density is a crucial parameter determining carrier-mediated ferromagnetism of (III,Mn)V semiconductors. The correlation between magnetic states and transport properties of the sample has been discussed. The contact spectroscopy method is used to investigate a band structure of (InMn)Sb near the Fermi level. Measurements of the degree of charge current spin polarization have been carried out using the point contact Andreev reflection (AR) spectroscopy. The AR data are analyzed by introducing a quasiparticle spectrum broadening, which is likely to be related to magnetic scattering in the contact. The AR spectroscopy data argued that at low temperature the sample is decomposed on metallic ferromagnetic clusters with relatively high spin polarization of charge carriers (up to 65% at 4.2 K) within a cluster.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0160432

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Unconventional ferromagnetism and transport properties of (In,Mn)Sb dilute magnetic semiconductor</title>
<author>
<name sortKey="Krivoruchko, V N" uniqKey="Krivoruchko V">V. N. Krivoruchko</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Donetsk Physics and Technology Institute NAS of Ukraine, Street R. Luxemburg 72</s1>
<s2>83114 Donetsk</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>83114 Donetsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tarenkov, V Yu" uniqKey="Tarenkov V">V. Yu. Tarenkov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Donetsk Physics and Technology Institute NAS of Ukraine, Street R. Luxemburg 72</s1>
<s2>83114 Donetsk</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>83114 Donetsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Varyukhin, D V" uniqKey="Varyukhin D">D. V. Varyukhin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Donetsk Physics and Technology Institute NAS of Ukraine, Street R. Luxemburg 72</s1>
<s2>83114 Donetsk</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>83114 Donetsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="D Yachenko, A I" uniqKey="D Yachenko A">A. I. D Yachenko</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Donetsk Physics and Technology Institute NAS of Ukraine, Street R. Luxemburg 72</s1>
<s2>83114 Donetsk</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Ukraine</country>
<wicri:noRegion>83114 Donetsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pashkova, O N" uniqKey="Pashkova O">O. N. Pashkova</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>N. S. Kumakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky av.</s1>
<s2>119991 Moscow</s2>
<s3>RUS</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ivanov, V A" uniqKey="Ivanov V">V. A. Ivanov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>N. S. Kumakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky av.</s1>
<s2>119991 Moscow</s2>
<s3>RUS</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0160432</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0160432 INIST</idno>
<idno type="RBID">Pascal:10-0160432</idno>
<idno type="wicri:Area/Main/Corpus">004786</idno>
<idno type="wicri:Area/Main/Repository">003598</idno>
<idno type="wicri:Area/Russie/Extraction">000090</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0304-8853</idno>
<title level="j" type="abbreviated">J. magn. magn. mater.</title>
<title level="j" type="main">Journal of magnetism and magnetic materials</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Andreev reflection</term>
<term>Band structure</term>
<term>Carrier density</term>
<term>Doping</term>
<term>Ferromagnetic materials</term>
<term>Ferromagnetism</term>
<term>III-V semiconductors</term>
<term>IV characteristic</term>
<term>Indium antimonides</term>
<term>Magnetic hysteresis</term>
<term>Magnetization</term>
<term>Manganese additions</term>
<term>Narrow band gap semiconductors</term>
<term>Point contacts</term>
<term>Polycrystals</term>
<term>Quasiparticles</term>
<term>Semimagnetic semiconductors</term>
<term>Spin polarization</term>
<term>Temperature effects</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Ferromagnétisme</term>
<term>Caractéristique courant tension</term>
<term>Hystérésis magnétique</term>
<term>Addition manganèse</term>
<term>Aimantation</term>
<term>Effet température</term>
<term>Densité porteur charge</term>
<term>Structure bande</term>
<term>Dopage</term>
<term>Polarisation spin</term>
<term>Réflexion Andreev</term>
<term>Quasiparticule</term>
<term>Semiconducteur semimagnétique</term>
<term>Semiconducteur bande interdite étroite</term>
<term>Polycristal</term>
<term>Semiconducteur III-V</term>
<term>Antimoniure d'indium</term>
<term>Contact ponctuel</term>
<term>Matériau ferromagnétique</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Narrow-gap higher mobility semiconducting alloys In
<sub>1-x</sub>
Mn
<sub>x</sub>
Sb were synthesized in polycrystalline form and their magnetic and transport properties have been investigated. Ferromagnetic response in In
<sub>0.98</sub>
Mn
<sub>0.02</sub>
Sb was detected by the observation of clear hysteresis loops up to room temperature in direct magnetization measurements. An unconventional (reentrant) magnetization versus temperature behavior has been found. We explained the observed peculiarities within the frameworks of recent models which suggest that a strong temperature dependence of the carrier density is a crucial parameter determining carrier-mediated ferromagnetism of (III,Mn)V semiconductors. The correlation between magnetic states and transport properties of the sample has been discussed. The contact spectroscopy method is used to investigate a band structure of (InMn)Sb near the Fermi level. Measurements of the degree of charge current spin polarization have been carried out using the point contact Andreev reflection (AR) spectroscopy. The AR data are analyzed by introducing a quasiparticle spectrum broadening, which is likely to be related to magnetic scattering in the contact. The AR spectroscopy data argued that at low temperature the sample is decomposed on metallic ferromagnetic clusters with relatively high spin polarization of charge carriers (up to 65% at 4.2 K) within a cluster.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0304-8853</s0>
</fA01>
<fA02 i1="01">
<s0>JMMMDC</s0>
</fA02>
<fA03 i2="1">
<s0>J. magn. magn. mater.</s0>
</fA03>
<fA05>
<s2>322</s2>
</fA05>
<fA06>
<s2>8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Unconventional ferromagnetism and transport properties of (In,Mn)Sb dilute magnetic semiconductor</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KRIVORUCHKO (V. N.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TARENKOV (V. Yu.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>VARYUKHIN (D. V.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>D'YACHENKO (A. I.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PASHKOVA (O. N.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>IVANOV (V. A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Donetsk Physics and Technology Institute NAS of Ukraine, Street R. Luxemburg 72</s1>
<s2>83114 Donetsk</s2>
<s3>UKR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>N. S. Kumakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky av.</s1>
<s2>119991 Moscow</s2>
<s3>RUS</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>915-923</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17230</s2>
<s5>354000181639080050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>44 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0160432</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of magnetism and magnetic materials</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Narrow-gap higher mobility semiconducting alloys In
<sub>1-x</sub>
Mn
<sub>x</sub>
Sb were synthesized in polycrystalline form and their magnetic and transport properties have been investigated. Ferromagnetic response in In
<sub>0.98</sub>
Mn
<sub>0.02</sub>
Sb was detected by the observation of clear hysteresis loops up to room temperature in direct magnetization measurements. An unconventional (reentrant) magnetization versus temperature behavior has been found. We explained the observed peculiarities within the frameworks of recent models which suggest that a strong temperature dependence of the carrier density is a crucial parameter determining carrier-mediated ferromagnetism of (III,Mn)V semiconductors. The correlation between magnetic states and transport properties of the sample has been discussed. The contact spectroscopy method is used to investigate a band structure of (InMn)Sb near the Fermi level. Measurements of the degree of charge current spin polarization have been carried out using the point contact Andreev reflection (AR) spectroscopy. The AR data are analyzed by introducing a quasiparticle spectrum broadening, which is likely to be related to magnetic scattering in the contact. The AR spectroscopy data argued that at low temperature the sample is decomposed on metallic ferromagnetic clusters with relatively high spin polarization of charge carriers (up to 65% at 4.2 K) within a cluster.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70E50P</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70E60E</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70B20F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Ferromagnétisme</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Ferromagnetism</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>IV characteristic</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Hystérésis magnétique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Magnetic hysteresis</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Addition manganèse</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Manganese additions</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Aimantation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Magnetization</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Effet température</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Temperature effects</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Structure bande</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Band structure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Doping</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Doping</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Polarisation spin</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Spin polarization</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Polarización spin</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Réflexion Andreev</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Andreev reflection</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Reflexión Andreev</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Quasiparticule</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Quasiparticles</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Semiconducteur semimagnétique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Semimagnetic semiconductors</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Semiconducteur bande interdite étroite</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Narrow band gap semiconductors</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Polycristal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Polycrystals</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Antimoniure d'indium</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Indium antimonides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Contact ponctuel</s0>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Point contacts</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Matériau ferromagnétique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Ferromagnetic materials</s0>
<s5>21</s5>
</fC03>
<fN21>
<s1>102</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000090 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000090 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:10-0160432
   |texte=   Unconventional ferromagnetism and transport properties of (In,Mn)Sb dilute magnetic semiconductor
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024